1-(1)/(4t-1)=(12)/((4t-1)^2)

Simple and best practice solution for 1-(1)/(4t-1)=(12)/((4t-1)^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1-(1)/(4t-1)=(12)/((4t-1)^2) equation:


D( t )

(4*t-1)^2 = 0

4*t-1 = 0

(4*t-1)^2 = 0

(4*t-1)^2 = 0

4*t-1 = 0 // + 1

4*t = 1 // : 4

t = 1/4

4*t-1 = 0

4*t-1 = 0

4*t-1 = 0 // + 1

4*t = 1 // : 4

t = 1/4

t in (-oo:1/4) U (1/4:+oo)

1-(1/(4*t-1)) = 12/((4*t-1)^2) // - 12/((4*t-1)^2)

1-(1/(4*t-1))-(12/((4*t-1)^2)) = 0

1-(4*t-1)^-1-12*(4*t-1)^-2 = 0

1-1/(4*t-1)-12/((4*t-1)^2) = 0

(-1*(4*t-1))/((4*t-1)^2)-12/((4*t-1)^2)+(1*(4*t-1)^2)/((4*t-1)^2) = 0

1*(4*t-1)^2-1*(4*t-1)-12 = 0

16*t^2-4*t-8*t-11+1 = 0

16*t^2-12*t-10 = 0

16*t^2-12*t-10 = 0

2*(8*t^2-6*t-5) = 0

8*t^2-6*t-5 = 0

DELTA = (-6)^2-(-5*4*8)

DELTA = 196

DELTA > 0

t = (196^(1/2)+6)/(2*8) or t = (6-196^(1/2))/(2*8)

t = 5/4 or t = -1/2

2*(t+1/2)*(t-5/4) = 0

(2*(t+1/2)*(t-5/4))/((4*t-1)^2) = 0

(2*(t+1/2)*(t-5/4))/((4*t-1)^2) = 0 // * (4*t-1)^2

2*(t+1/2)*(t-5/4) = 0

( 2 )

2 = 0

t belongs to the empty set

( t+1/2 )

t+1/2 = 0 // - 1/2

t = -1/2

( t-5/4 )

t-5/4 = 0 // + 5/4

t = 5/4

t in { -1/2, 5/4 }

See similar equations:

| 7/8-3/4= | | -3(4+x)+(-3x)=72 | | 3.75x+1=14.065+x | | Q=5000-10p | | 8n^2+4n+5= | | 3.75+1=14.065+x | | -2/7(z-14)-1/14z | | 4/9-7x/12=4/15-5x/18 | | (x/5)-10=-15 | | log(y)=2.0 | | logy=2.0 | | Log(2b-8)=log(b) | | (x/75)=.8 | | 10x+75x+175=3040 | | -2y^2-8=0 | | 12-(x/2)=23 | | 2m+3=5m | | 3e^2x-2=9 | | 3e^2x-3=9 | | 5*70-w=170 | | 25*70-7w=800 | | 13=b/3 | | (6x)/3=14 | | -1/6*(-5/7) | | 2(2m-1)-8m= | | 2a-7=4(3a+1)-3 | | 4x-3/10=4 | | -2(4m+1)+4m= | | 1/a2*1/a3 | | 235=2(3.14)(r)(7) | | 4m-2+(-8m)= | | 4x-10/3=4 |

Equations solver categories